Department of Information Engineering

On the Diameter of Bluetooth-Based Ad Hoc Networks

Supervisors
Ch. ${ }^{\text {mo }}$ Prof. Andrea Pietracaprina
Ch. ${ }^{\text {mo }}$ Prof. Geppino Pucci

Candidate
Alberto Pettarin

Padova, $7^{\text {th }}$ July 2008

Contents

(1) Ad Hoc Networks and Bluetooth Technology/Topology
(2) Our Contribution: the Diameter of Bluetooth Topology
(3) Conclusions and Future Work

Ad Hoc Networks

- Autonomous distributed systems connected wirelessly
- No centralized control, random placement \Rightarrow self-organizing, location-oblivious algorithms
- Local data processing \Rightarrow less traffic on the network
- No addressing \Rightarrow broadcast multi-hop transmission
- Applications: sensing, control, surveillance, engineering, ...

Bluetooth Technology

- Suitable for short-range applications (PANs)
- 2.4 GHz ISM band, $1-3 \mathrm{Mb} /$ s rate, low current absorption
- Frequency-hopping with static interference avoidance mechanism
- Piconet: 1 master and up to 7 slaves sharing a common hopping pattern
- The master device switches slave-to-slave transmissions
- Scatternet formation: one slave can belong to more than one piconet

Bluetooth Topology BT(r(n), c(n))

Our Reference Model

We model the device discovery phase [IPDPS04] in Bluetooth-based networks with the random graph known as Bluetooth Topology $B T(r(n), c(n))$

Definition (Bluetooth Topology [SPAA04])

$G=(V, E)$ undirected random graph obtained in the following manner:

- spread $\quad|V|=n \quad$ points uniformly at random in $[0,1]^{2}$;
- each point selects $c(n)$ neighbours among all the nodes within distance $r(n)$, choosing uniformly at random;
- $\{u, v\} \in E \quad \Leftrightarrow \quad u$ has selected v or vice versa.

Connectivity of $B T(r(n), c(n))$

Theorem (Pietracaprina, Pucci et al. [EURO07])

There exist two positive real constants γ_{1}, γ_{2} such that, if

$$
r(n) \geqslant \gamma_{1} \sqrt{\frac{\log n}{n}} \quad \text { and } \quad c(n)=\gamma_{2} \log \frac{1}{r(n)}
$$

$B T(r(n), c(n))$ is connected w.h.p.

- A similar result was demonstrated in [SPAA05] for $r, c=\Theta(1)$
- It exhibits expansion properties [SPAA04] whenever $r, c=\Theta(1)$
- Simulations indicate that $c=3$ choices are almost always sufficient to obtain connectedness [IPDPS04, EURO07]

The Diameter of Bluetooth Topology

We studied the diameter of $B T(r(n), c(n))$ for those parameter values which ensure connectivity

Definition (Diameter)
$G=(V, E)$ undirected connected graph, the diameter of G is

$$
\operatorname{diam}(G)=\max _{u, v \in V} \operatorname{dist}(u, v)
$$

where $\operatorname{dist}(u, v)$ is the number of edges in a shortest path between u and v.

- Assuming multi-hop communication with unitary cost per traversed edge:

$$
\text { diameter } \approx \text { maximum delay on the network }
$$

- Edge cost $=(r x+t x+$ queueing + processing $+\ldots)$ time

The Main Results: Upper Bound to diam($B T$)

Theorem (Upper Bound)

There exist two positive real constants γ_{1}, γ_{2} such that if

$$
r(n) \geqslant \gamma_{1} \sqrt{\frac{\log n}{n}} \quad \text { and } \quad c(n)=\gamma_{2} \log \frac{1}{r(n)}
$$

then the following events occur w.h.p.:
(1) $B T(r(n), c(n))$ is connected;
(2) $\operatorname{diam}(B T(r(n), c(n)))= \begin{cases}O\left(\frac{1}{r(n)}\right) & \text { if } r(n) \leqslant n^{-\frac{1}{8}} \\ O\left(\frac{1}{r(n)}+\log n\right) & \text { if } r(n)>n^{-\frac{1}{8}}\end{cases}$

The Main Results: Lower Bounds to diam($B T$)

Theorem (Geometric Lower Bound)

There exists a positive real constant γ_{1} such that if

$$
r(n) \geqslant \gamma_{1} \sqrt{\frac{\log n}{n}}
$$

then w.h.p.

$$
\operatorname{diam}(B T(r(n), c(n)))=\Omega\left(\frac{1}{r(n)}\right) .
$$

Theorem (Improved Lower Bound)
Let $r(n)=\sqrt{2}$ and $c(n)=\Theta(1)$. Then, as $n \rightarrow \infty$,

$$
\operatorname{Pr}\left[\operatorname{diam}(B T(r(n), c(n)))=\Omega\left(\frac{\log n}{\log \log n}\right)\right] \rightarrow 1
$$

Proof Framework

Consider the standard tessellation of $[0,1]^{2}$ into k^{2} square cells, with

$$
k=\left\lceil\frac{\sqrt{5}}{r(n)}\right\rceil
$$

- two nodes residing in adjacent cells are within distance $r(n)$
- w.h.p. each cell contains $\approx \frac{n}{k^{2}}$ nodes
- w.h.p. each device sees $\approx n r^{2}$ nodes in its visibility range

UB Case 1 - Short radii: $r(n) \leqslant n^{-\frac{1}{3}}$

- Perform a BFS until $m=\gamma_{3} \log n$ nodes are reached (set M in figure).
- From each $w \in M$ start a path with nodes in adjacent cells. Paths have to be edge-disjoint.
With probability $\geqslant 1-o\left(\frac{1}{n^{3}}\right)$ at least one reaches Q_{v} (internally
 connected).

Union bound over $O\left(n^{2}\right)$ pairs of nodes \Rightarrow

$$
\operatorname{diam}(B T)=O\left(m+2 k+n / k^{2}\right)=O\left(\frac{1}{r(n)}\right) \quad \text { w.h.p. }
$$

UB Case 2 - Medium radii: $n^{-\frac{1}{3}}<r(n) \leqslant n^{-\frac{1}{8}}$

Similar idea, but now $m=n / k^{2} \approx n r^{2}$ dominates $2 k$: we have to bound the diameter of G_{Q} (still internally connected).

Let $V(Q)$ denote the set of nodes residing in Q, with $|V(Q)|=m$.

- With a BFS argument we can show that, starting from a given $u \in V(Q)$, we can reach $M=\frac{m}{2}+1$ nodes in $V(Q)$ (the majority) with at most $\log _{2} M$ hops with probability $\geqslant 1-o\left(\frac{1}{m^{4}}\right)$.
- Applying the union bound over $V(Q)$, we obtain that

$$
\forall u, v \in V(Q) \quad \operatorname{dist}(u, v) \leqslant 2 \log _{2} M+1=O(\log n) .
$$

- With a proper union bound over all $k^{2}=O\left(m^{2}\right)$ cells, we have that

$$
\operatorname{Pr}\left[\forall \text { cell } Q \quad \operatorname{diam}\left(G_{Q}\right)=O(\log n)\right] \geqslant 1-o\left(\frac{1}{m}\right)=1-o\left(\frac{1}{n^{1 / 3}}\right) .
$$

Concluding,

$$
\operatorname{diam}(B T)=O\left(\gamma_{3} \log n+2 k+O(\log n)\right)=O\left(\frac{1}{r(n)}\right) \quad \text { w.h.p. }
$$

UB Case 3 - Long radii: $r(n)>n^{-\frac{1}{8}}$

Now G_{Q} 's are not internally connected but a GCC C with $\geqslant \frac{n}{8 k^{2}}$ nodes exists w.h.p.

- Perform a BFS until $m=n^{1 / 3}$ nodes are reached. We can upperbound the real process setting $c(n)=2$ obtaining w.h.p. a complete binary tree of height $\log _{2} m=\Theta(\log n)$.
- As before, with probability $\geqslant 1-o\left(\frac{1}{n^{3}}\right)$ there exist at least two paths starting from u and v leading to $V(Q, C)$.
- We proved that diam $(G C C)=O(\log n)$ with a branching-process argument.

Union bound over $O\left(n^{2}\right)$ pairs of nodes \Rightarrow
$\operatorname{diam}(B T)=O\left(2\left(\gamma_{3} \log n+2 k\right)+\log n\right)=O\left(\frac{1}{r(n)}+\log n\right) \quad$ w.h.p.

Conclusions and future work

Our results

We demonstrated tight asymptotic results about the diameter of $B T(r(n), c(n))$ for almost all the radius values, especially for the interesting ones, i.e. $r(n) \approx r_{M I N}$

Possible improvements

- $c=\Theta(1)$ suffices for connectivity
- Different node distributions (holes, different area shapes)
- Mobility issues
- Neighbour selection as a stochastic process in time, other selection policies
- Routing algorithms

Thanks for your attention!

Any question?

References

[IPDPS04] F. Ferraguto, G. Mambrini, A. Panconesi, C. Petrioli
A new approach to device discovery and scatternet formation in Bluetooth networks
Proc. IPDPS'04, 2004
[SPAA04] A. Panconesi, J. Radhakrishnan
Expansion properties of (secure) wireless networks
Proc. SPAA'04, 2004
[SPAA05] D. Dubhashi, C. Johansson, O. Häggström, A. Panconesi, M. Sozio
Irrigating ad hoc networks in constant time
Proc. SPAA'05, 2005
[EURO07] P. Crescenzi, C. Nocentini, A. Pietracaprina, G. Pucci, C. Sandri
On the Connectivity of Bluetooth-Based Ad Hoc Networks
Proc. EURO-PAR'07, 2007

Geometric Lower Bound

Theorem (Geometric Lower Bound)

There exists a positive real constant γ_{1} such that if

$$
r(n) \geqslant \gamma_{1} \sqrt{\frac{\log n}{n}}
$$

then w.h.p.

$$
\operatorname{diam}(B T(r(n), c(n)))=\Omega\left(\frac{1}{r(n)}\right) .
$$

Proof.

We need at least

$$
\left\lceil\frac{\sqrt{2}\left(1-\frac{2}{k}\right)}{r}\right\rceil=\Omega\left(\frac{1}{r(n)}\right)
$$

hops to move from u to v.

Improved Lower Bound

Theorem (Improved Lower Bound)
Let $r(n)=\sqrt{2}$ and $c(n)=\Theta(1)$. Then, as $n \rightarrow \infty$,

$$
\operatorname{Pr}\left[\operatorname{diam}(B T(r(n), c(n)))=\Omega\left(\frac{\log n}{\log \log n}\right)\right] \rightarrow 1
$$

Proof.
Every device can select every other node. Let X_{u} be the degree of u : $\mathrm{E}\left[X_{u}\right]=2 c$.
Using a Chernoff bound:

$$
\operatorname{Pr}\left[\forall u \quad X_{u} \leqslant 3 \log n+c=d\right] \geqslant 1-o\left(\frac{1}{n^{2}}\right) .
$$

The diameter of $B T$ cannot be less than the diameter of a tree with ariety $d-1$.
Therefore, $\operatorname{diam}(B T)=\Omega\left(\log _{d-1} n\right)=\Omega\left(\frac{\log n}{\log \log n}\right) \quad$ w.h.p.

