

University of Padova Faculty of Engineering

Department of Information Engineering

On the Diameter of Bluetooth-Based Ad Hoc Networks

Supervisors

Ch.^{mo} Prof. Andrea Pietracaprina Ch.^{mo} Prof. Geppino Pucci

> Candidate Alberto Pettarin

Padova, 7th July 2008

Contents

Ad Hoc Networks and Bluetooth Technology/Topology

Our Contribution: the Diameter of Bluetooth Topology

Ad Hoc Networks

- Autonomous distributed systems connected wirelessly
- No centralized control, random placement ⇒ self-organizing, location-oblivious algorithms
- Local data processing \Rightarrow less traffic on the network
- No addressing ⇒ broadcast multi-hop transmission
- Applications: sensing, control, surveillance, engineering, ...

Bluetooth Technology

Bluetooth Technology

- Suitable for short-range applications (PANs)
- 2.4 GHz ISM band, 1–3 Mb/s rate, low current absorption
- Frequency-hopping with static interference avoidance mechanism
- Piconet: 1 master and up to 7 slaves sharing a common hopping pattern
- The master device switches slave-to-slave transmissions
- Scatternet formation: one slave can belong to more than one piconet

Bluetooth Topology

Bluetooth Topology BT(r(n), c(n))

Our Reference Model

We model the device discovery phase [IPDPS04] in Bluetooth-based networks with the random graph known as Bluetooth Topology BT(r(n), c(n))

Definition (Bluetooth Topology [SPAA04])

- G = (V, E) undirected random graph obtained in the following manner:
 - spread |V| = n points uniformly at random in $[0, 1]^2$;
 - each point selects c(n) neighbours among all the nodes within distance r(n), choosing uniformly at random;
 - $\{u, v\} \in E \iff u$ has selected v or vice versa.

Connectivity of BT(r(n), c(n))

Theorem (Pietracaprina, Pucci et al. [EURO07])

There exist two positive real constants γ_1, γ_2 such that, if

$$r(n) \ge \gamma_1 \sqrt{\frac{\log n}{n}}$$
 and $c(n) = \gamma_2 \log \frac{1}{r(n)}$,

BT(r(n),c(n)) is connected w.h.p.

- A similar result was demonstrated in [SPAA05] for $r, c = \Theta(1)$
- It exhibits expansion properties [SPAA04] whenever $r, c = \Theta(1)$
- Simulations indicate that c = 3 choices are almost always sufficient to obtain connectedness [IPDPS04, EURO07]

The Diameter of Bluetooth Topology

We studied the diameter of BT(r(n), c(n)) for those parameter values which ensure connectivity

Definition (Diameter)

G = (V, E) undirected connected graph, the diameter of G is

 $diam(G) = \max_{u,v \in V} dist(u, v)$

where dist(u, v) is the number of edges in a shortest path between u and v.

Assuming multi-hop communication with unitary cost per traversed edge:

diameter \approx maximum delay on the network

• Edge cost = (rx + tx + queueing + processing + . . .) time

The Main Results: Upper Bound to diam(BT)

Theorem (Upper Bound)

There exist two positive real constants γ_1, γ_2 such that if

$$r(n) \ge \gamma_1 \sqrt{\frac{\log n}{n}}$$
 and $c(n) = \gamma_2 \log \frac{1}{r(n)}$

then the following events occur w.h.p.:

BT(r(n), c(n)) is connected;
diam(BT(r(n), c(n))) = $\begin{cases}
O\left(\frac{1}{r(n)}\right) & \text{if } r(n) \leq n^{-\frac{1}{8}} \\
O\left(\frac{1}{r(n)} + \log n\right) & \text{if } r(n) > n^{-\frac{1}{8}}
\end{cases}$

The Main Results: Lower Bounds to diam(BT)

Theorem (Geometric Lower Bound)

There exists a positive real constant γ_1 such that if

$$r(n) \geqslant \gamma_1 \sqrt{\frac{\log n}{n}}$$

then w.h.p.

diam
$$(BT(r(n), c(n))) = \Omega\left(\frac{1}{r(n)}\right).$$

Theorem (Improved Lower Bound)

Let
$$r(n) = \sqrt{2}$$
 and $c(n) = \Theta(1)$. Then, as $n \to \infty$,

$$\Pr\left[\mathsf{diam}(BT(r(n), c(n))) = \Omega\left(\frac{\log n}{\log \log n}\right)\right] \to 1$$

Proof Framework

Proof Framework

Consider the standard tessellation of $[0, 1]^2$ into k^2 square cells, with

$$k = \left\lceil \frac{\sqrt{5}}{r(n)} \right\rceil$$

- two nodes residing in adjacent cells are within distance *r*(*n*)
- w.h.p. each cell contains $\approx \frac{n}{k^2}$ nodes
- w.h.p. each device sees ≈ nr² nodes in its visibility range

UB Case 1 — Short radii: $r(n) \leq n^{-\frac{1}{3}}$

- Perform a BFS until $m = \gamma_3 \log n$ nodes are reached (set *M* in figure).
- From each $w \in M$ start a path with nodes in adjacent cells. Paths have to be edge-disjoint. With probability $\ge 1 - o\left(\frac{1}{a^3}\right)$ at least one reaches Q_{v} (internally connected).

Union bound over
$$O(n^2)$$
 pairs of nodes \Rightarrow
diam $(BT) = O(m + 2k + n/k^2) = O\left(\frac{1}{r(n)}\right)$ w.h.p.

UB Case 2 — Medium radii: $n^{-\frac{1}{3}} < r(n) \leq n^{-\frac{1}{8}}$

Similar idea, but now $m = n/k^2 \approx nr^2$ dominates 2k: we have to bound the diameter of G_Q (still internally connected).

Let V(Q) denote the set of nodes residing in Q, with |V(Q)| = m.

• With a BFS argument we can show that, starting from a given $u \in V(Q)$, we can reach $M = \frac{m}{2} + 1$ nodes in V(Q) (the majority) with at most $\log_2 M$ hops with probability $\ge 1 - o\left(\frac{1}{m^4}\right)$.

• Applying the union bound over V(Q), we obtain that

 $\forall u, v \in V(Q) \quad \text{dist}(u, v) \leq 2 \log_2 M + 1 = O(\log n).$

• With a proper union bound over all $k^2 = O(m^2)$ cells, we have that

$$\Pr\left[\forall \mathsf{cell} \ Q \quad \mathsf{diam}(G_Q) = O(\log n)\right] \geqslant 1 - o\left(\frac{1}{m}\right) = 1 - o\left(\frac{1}{n^{1/3}}\right).$$

Concluding,

diam
$$(BT) = O(\gamma_3 \log n + 2k + O(\log n)) = O\left(\frac{1}{r(n)}\right)$$
 w.h.p.

UB Case 3 — Long radii: $r(n) > n^{-\frac{1}{8}}$

Now G_Q 's are not internally connected but a GCC C with $\geq \frac{n}{8k^2}$ nodes exists w.h.p.

- Perform a BFS until $m = n^{1/3}$ nodes are reached. We can upperbound the real process setting c(n) = 2 obtaining w.h.p. a complete binary tree of height $\log_2 m = \Theta(\log n)$.
- As before, with probability $\ge 1 o\left(\frac{1}{a^3}\right)$ there exist at least two paths starting from u and v leading to V(Q, C).
- We proved that diam $(GCC) = O(\log n)$ with a branching-process argument.

Union bound over
$$O(n^2)$$
 pairs of nodes \Rightarrow

diam
$$(BT) = O(2(\gamma_3 \log n + 2k) + \log n) = O\left(\frac{1}{r(n)} + \log n\right)$$
 w.h.p.

Conclusions and future work

Our results

We demonstrated tight asymptotic results about the diameter of BT(r(n), c(n)) for almost all the radius values, especially for the interesting ones, i.e. $r(n) \approx r_{MIN}$

Possible improvements

- $c = \Theta(1)$ suffices for connectivity
- Different node distributions (holes, different area shapes)
- Mobility issues
- Neighbour selection as a stochastic process in time, other selection policies
- Routing algorithms

• ...

Thanks for your attention!

Any question?

References

[IPDPS04] F. Ferraguto, G. Mambrini, A. Panconesi, C. Petrioli

A new approach to device discovery and scatternet formation in Bluetooth networks Proc. IPDPS'04, 2004

[SPAA04] A. Panconesi, J. Radhakrishnan

Expansion properties of (secure) wireless networks Proc. SPAA'04, 2004

[SPAA05] D. Dubhashi, C. Johansson, O. Häggström, A. Panconesi, M. Sozio Irrigating ad hoc networks in constant time Proc. SPAA'05, 2005

[EUR007] P. Crescenzi, C. Nocentini, A. Pietracaprina, G. Pucci, C. Sandri On the Connectivity of Bluetooth-Based Ad Hoc Networks Proc. EURO-PAR'07, 2007

Geometric Lower Bound

Theorem (Geometric Lower Bound)

There exists a positive real constant γ_1 such that if

$$r(n) \geqslant \gamma_1 \sqrt{\frac{\log n}{n}}$$

then w.h.p.

diam
$$(BT(r(n), c(n))) = \Omega\left(\frac{1}{r(n)}\right).$$

Proof.

We need at least

$$\left\lceil \frac{\sqrt{2}\left(1-\frac{2}{k}\right)}{r} \right\rceil = \Omega\left(\frac{1}{r(n)}\right)$$

hops to move from u to v.

Lower Bounds

Improved Lower Bound

Theorem (Improved Lower Bound)

Let
$$r(n) = \sqrt{2}$$
 and $c(n) = \Theta(1)$. Then, as $n \to \infty$,

$$\Pr\left[\operatorname{diam}(BT(r(n), c(n))) = \Omega\left(\frac{\log n}{\log \log n}\right)\right] \to 1.$$

Proof.

Every device can select every other node. Let X_u be the degree of u: $E[X_u] = 2c$. Using a Chernoff bound:

$$\Pr\left[\forall u \mid X_u \leq 3 \log n + c = d\right] \ge 1 - o\left(\frac{1}{n^2}\right)$$

The diameter of *BT* cannot be less than the diameter of a tree with ariety d - 1. Therefore, diam $(BT) = \Omega(\log_{d-1} n) = \Omega\left(\frac{\log n}{\log \log n}\right)$ w.h.p.