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Motivation

Ad hoc/sensor/vehicular/personal networks will be the future of

distributed computing (as efficiency + integration ↑, cost-per-unit ↓)

So far simulation- or modeling-driven development process⇒
expensive and heavily technology-dependent

We need theoretical knowledge of the fundamental properties of these

systems, in order to design efficient and scalable algorithms
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Thesis Objectives and Results

Objectives

I Define graph models of interesting networks

I Analyze their properties related to information spreading

I Design efficient algorithms using this knowledge

Results

Characterization of:

I Expansion and diameter of Bluetooth networks

I Flooding time in dynamic Bluetooth networks

I Broadcast time in sparse mobile networks and several related

scenarios
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Outline of the Presentation

I Bluetooth Networks

I Bluetooth Topology Model

I Expansion and Diameter

I Flooding Time in Dynamic BT Networks

I Dynamic Graphs

I Random Walker Model

I Broadcast Time

I Related Scenarios

I Conclusions
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Bluetooth Technology

I Technology for wireless communication introduced as cable

replacement for small PANs connecting laptops, mobile phones,

PDAs, etc.

I Arguments in favor of BT for large ad-hoc scenarios:

I cheap and easily integrable

I good data rate/energy consumption tradeoff

I wide adoption



Bluetooth Technology: Network Organization/Formation

I Piconet: 1 master, 6 7 slaves

I Scatternet: interconnection of piconets through gateways to form

multi-hop ad hoc network; three phases: device discovery, piconet

formation, scatternet formation
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Bluetooth Topology: Mathematical Model

r(n)

c(n)

Graph BT (r(n), c(n))

I n nodes (devices) placed at

random in [0, 1]2

I visibility range r(n)

I among all visible nodes

each device independently

selects c(n) random

neighbors (it selects all

visible nodes if < c(n))
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1

BT (0.075, 5) with n = 1500 nodes.



Relevant Questions

How many neighbors should each device

discover, in order for BT to exhibit:

I connectivity (i.e., single connected component)?

I good expansion (i.e., high bandwidth)?

I low diameter (i.e., low latency)?



Previous Work

I [Penrose 03]: r(n) = Ω
(√

log n/n
)

necessary and sufficient to

achieve connectivity w.h.p., when each node connects to all visible

nodes (Random Geometric Graph or visibility graph)

I [Panconesi et al., 04]: for r(n) = Θ (1), c(n) = Θ (1) suffices to

attain high expansion w.h.p.

I [Dubhashi et al., 05]: for r(n) = Θ (1), c(n) = 2 suffices to attain

connectivity w.h.p.

Remark

Setting r(n) = Θ (1) implies that each node sees a constant fraction

of all other nodes⇒ unfeasible for large n.

Analysis for r(n) decreasing in n is needed!
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Previous Work (cont’d)

Theorem (Crescenzi, Nocentini, Pietracaprina, Pucci, 2007)

There exist two positive real constants γ1,γ2 such that if

r(n) > γ1

√
log n

n
and c(n) = γ2 log

1
r(n)

then BT(r(n), c(n)) is connected w.h.p.



Our Contribution [ESA’09, ToCS’12]

I Tight bounds on the expansion of BT(r(n), c(n))

I Tight bounds (up to a logarithmic additive term) on the diameter of

BT(r(n), c(n))

I An upper bound on the flooding time in a dynamic version of

BT(r(n), c(n)), where nodes move over time



Expansion of BT(r(n), c(n))

Definition (Node Expansion)

λ (s) = min
S⊆V :|S|=s

|Γ (S) − S|
s

, 1 6 s 6 |V | /2.

Theorem (Expansion of BT)

Let m = Θ
(
nr2(n)

)
. Then, there exist two constants γ1,γ2 > 0 s.t. if

r(n) > γ1

√
log n

n
and c(n) = γ2 log

1
r(n)

then the expansion of BT(r(n), c(n)) is, w.h.p.,

λ (s) =

Θ (min { c(n),m/s }) if 1 6 s 6 αm

Θ
(√

m/s
)

if αm < s 6 n/2.



Diameter of BT(r(n), c(n))

Definition (Diameter)

diam(G) = max { dist(u, v) : u, v ∈ V (G) }

Theorem (Diameter of BT)

There exist two positive real constants γ1,γ2 such that if

r(n) > γ1

√
log n

n
and c(n) = γ2 log

1
r(n)

then the diameter of BT(r(n), c(n)) is, w.h.p.,

I diam(BT ) = O (1/r(n) + log n)

I diam(BT ) = Ω (1/r(n)) (tight for r(n) = O (1/ log n))

I diam(BT ) = Ω (log n/ log log n) for r(n) = Θ (1) .



Dynamic Bluetooth Topology

“Definition” of G(n, ρ, r(n), c(n))

Sequence of Markovian Evolving Graphs {Gt }t∈N, where the edge-set of

Gt is selected according to the BT(r(n), c(n)) protocol, and each node

moves in a time step u.a.r. within a ball of radius ρ

Theorem (Flooding Time of DBT)

There exist two positive real constants γ1,γ2 such that if

r(n) > γ1

√
log n

n
and c(n) = γ2 log

1
r(n)

then the flooding time of G(n, ρ, r(n), c(n)) is, w.h.p.,

TFL = O
(

1
r(n)

+ log n
)
.



Extensions & Open Problems

I Extensions

I When r(n) = Θ
(√

log n/n
)

(minimum radius),

c(n) = Θ
(√

log n/ log log n
)

is the minimum number of neighbors

needed to achieve connectivity w.h.p. (Broutin et al. [arXiv’11])

I Generalization to higher dimensions

I Open problems

I Complete characterization of the trade-off between r(n) and c(n)

I Studying how expansion and diameter behave in the above case
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Dynamic

Graphs



Mobile Networks: a Closer Look

Mobile networks are distributed systems

I dynamic: topology changes over time. . .

I . . . but not too fast: mobility speed� transmission speed

I with no infrastructure: wireless, multi-hop communications

I under energy constraints: small transmission radius

I essentially planar
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Previous Work
I Alves et al. [Ann.App.Pr.’02] and Kesten et al. [Ann.Pr.’05]

I shape of the subspace of Zd containing “infected” RWs (Frog Model)

I Dimitriou et al. [Dis.App.Mat.’06]

I k agents performing RWs on an n-node graph, bounds on the

expected infection time, depending on graph expansion

I Clementi et al. [ICALP’09, IPDPS’09]

I k = Θ (n) agents on a n-node 2D grid (dense scenario)

large maximum speed R and/or large transmission radius r

I bounds on broadcast time

I Peres et al. [SODA’11]

I Poisson point process in Rd above percolation threshold

agents follow Brownian motion

I bounds on detection, coverage, broadcast time



Mobility Model

I
√

n ×√n 2D grid w/ loops

I k = O (n) mobile agents

I Initial positions ≡ stationary

distribution (⇒ uniform)

I Independent, simple,

discrete-time random walks

I posa(t) ≡ position of agent a at

time t ∈ N

√
n

t = 0√
n

a

t = 0t = 1t = 2t = 3t = 4t = 5
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Communication Model

I Each agent has transmission

radius r > 0

I Visibility graph Gt(r):

I vertices ≡ agents

I edge {a, a ′} ∈ Gt(r) ⇐⇒
|| posa(t) − posa′(t) || 6 r

I each connected component is

called “island”

a

a
r

a

b

a

b

c

Gt(r)Gt(r)
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Communication Model

I Ma(t) ≡ messages known by a

at time t

I Ma(t) is non-decreasing

(agents don’t forget messages)

I On a meeting, agents exchange

all the messages they know

aa
r

a

b

a

b

c

Gt(r)

Gt(r)



Broadcast Time

Initially, only the source s knows the rumor M:

Ms(0) = {M} and Ma(0) = ∅ ∀a 6= s

We study the Broadcast Time TB of the system, which is the first time

instant when all the agents know the rumor:

TB = inf { t > 0 : M ∈ Ma(t) ∀a }

Remarks

I TB ≡ TB(n, k , r)

I TB is non-increasing in r : r ′ > r ⇒ TB(r ′) 6 TB(r)

I Broadcast analysis extends to other communication primitives
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Our Contribution [PODC’11]

I Tight bounds on the broadcast time TB of a message in a sparse

system of mobile agents

I Our analysis techniques extend to several related models (dense

case, multiple messages, different interaction rules, . . . )



Upper Bound on TB

Theorem 1 (Upper Bound on TB)

Let r = 0 (physical meetings). Then, for k > 2,

TB = Õ
(

n√
k

)
with probability > 1 − 1/n2.

Since TB(r) is non-increasing:

Corollary 1

TB = Õ
(

n/
√

k
)

w.h.p. for any k > 2, r > 0.

Quite surprisingly, this bound is essentially tight (see next slide)
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Lower Bound on TB

Theorem 2 (Lower Bound on TB)

Let r 6 1
8e3

√
n/k . Then, for k > 2,

TB = Ω̃

(
n√
k

)
with probability > 1 − (2−(k−1) + 1/n + 2/n2).

Peres et al. [SODA’11] consider the case r > rc ≈
√

n/k (i.e., above

percolation threshold)

Together with Corollary 1, we have the tight result:

Corollary 2

If k = Ω (log n) and r 6 1
8e3

√
n/k , then TB = Θ̃

(
n/
√

k
)

w.h.p.
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Extensions & Open Problems
I Our analysis techniques extend to

I dense scenarios (k > n/2)

I other communication primitives (gossip, multicast)

I related models (Frog Model, mobility with jumps, predator-prey)

I Extensions

I Generalization to higher dimensions (Lam et al., SODA’12)

I Characterizing the TB w.r.t. the mixing time of the underlying topology

(Clementi et al., arXiv’11)

I Open problems

I Modeling barriers and obstacles

I More realistic mobility models

I Tradeoffs between communication complexity and spreading time

I Tradeoffs between agent’s buffer size and spreading time
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Conclusions



Contribution of this Thesis

I Bluetooth Topology

I Tight bounds on expansion

I Tight bounds (up to a log additive factor) on diameter

I Upper bound on flooding time in dynamic Bluetooth networks

I Dynamic Graphs

I Tight bounds (up to polylog factors) on the broadcast time of a

message in sparse mobile networks

I Our analysis techniques apply to several related scenarios
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