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Ad hoc/sensor/vehicular/personal networks will be the future of

distributed computing (as efficiency + integration 1, cost-per-unit |)

So far simulation- or modeling-driven development process =

expensive and heavily technology-dependent

We need theoretical knowledge of the fundamental properties of these

systems, in order to design efficient and scalable algorithms
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Objectives

» Define graph models of interesting networks
» Analyze their properties related to information spreading

» Design efficient algorithms using this knowledge

Results

Characterization of:
» Expansion and diameter of Bluetooth networks
» Flooding time in dynamic Bluetooth networks

» Broadcast time in sparse mobile networks and several related

scenarios



Outline of the Presentation

» Bluetooth Networks

» Bluetooth Topology Model
» Expansion and Diameter

> Flooding Time in Dynamic BT Networks

» Dynamic Graphs

» Random Walker Model
» Broadcast Time

» Related Scenarios

» Conclusions
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Bluetooth Technology

€3 Bluetooth’

» Technology for wireless communication introduced as cable

replacement for small PANs connecting laptops, mobile phones,
PDAs, etc.

» Arguments in favor of BT for large ad-hoc scenarios:
» cheap and easily integrable

» good data rate/energy consumption tradeoff
> wide adoption
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» Piconet: 1 master, < 7 slaves

» Scatternet: interconnection of piconets through gateways to form
multi-hop ad hoc network; three phases: device discovery, piconet

formation, scatternet formation
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Bluetooth Topology: Mathematical Model

. Graph BT(r(n), c(n))
¢ i » nnodes (devices) placed at
. random in [0, 1]2

» visibility range r(n)

» among all visible nodes
each device independently
selects ¢(n) random

N neighbors (it selects all

visible nodes if < c(n))
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BT(0.075,5) with n = 1500 nodes.



Relevant Questions

How many neighbors should each device

discover, in order for BT to exhibit:

» connectivity (i.e., single connected component)?
» good expansion (i.e., high bandwidth)?

» low diameter (i.e., low latency)?



Previous Work
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achieve connectivity w.h.p., when each node connects to all visible
nodes (Random Geometric Graph or visibility graph)

» [Panconesi et al., 04]: for r(n) = © (1), c¢(n) = O (1) suffices to
attain high expansion w.h.p.
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» [Penrose 03]: r(n) = Q (\/W) necessary and sufficient to
achieve connectivity w.h.p., when each node connects to all visible
nodes (Random Geometric Graph or visibility graph)

» [Panconesi et al., 04]: for r(n) = © (1), c¢(n) = O (1) suffices to
attain high expansion w.h.p.

» [Dubhashi et al., 05]: for r(n) = © (1), c¢(n) = 2 suffices to attain

connectivity w.h.p.

Remark

Setting r(n) = © (1) implies that each node sees a constant fraction

of all other nodes = unfeasible for large n.

Analysis for r(n) decreasing in nis needed!



Previous Work (cont'd)

Theorem (Crescenzi, Nocentini, Pietracaprina, Pucci, 2007)

There exist two positive real constants y1,y» such that if

/logn 1
> — = _—
r(n) = ’Y1 n and C(n) V2 IOQ r(n)

then BT(r(n), c(n)) is connected w.h.p.



Our Contribution [ESA’09, ToCS’12]

» Tight bounds on the expansion of BT(r(n), c(n))

» Tight bounds (up to a logarithmic additive term) on the diameter of
BT(r(n), c(n))

» An upper bound on the flooding time in a dynamic version of

BT(r(n), c(n)), where nodes move over time



Expansion of BT(r(n), c(n))
Definition (Node Expansion)

A(s)= min 7|F(S)7S|

. 1<s<|V]/2
SCV:|S|=s S

Theorem (Expansion of BT)

Letm = © (nr?(n)). Then, there exist two constantsy1,y2 > 0 s.t. if

logn 1
Z Y1\ —— =vslog —
r(n) 1 - and c¢(n) =vyzlog )

then the expansion of BT(r(n), c(n)) is, w.h.p.,

{@(min{c(n),m/s}) if 1<s<am
Als) =

o (y/m/s) if am<s<n/2.



Diameter of BT(r(n), c(n))

Definition (Diameter)
diam(G) = max{dist(u,v) : u,v e V(Q)}

Theorem (Diameter of BT)

There exist two positive real constants y¢,v2 such that if

[logn 1
> -9 — -
r(n) > vy and c¢(n) =+vyzlog )

then the diameter of BT(r(n), c(n)) is, w.h.p.,
» diam(BT) = O(1/r(n) +logn)
» diam(BT) = Q (1/r(n)) (tightforr(n) = O(1/logn))
» diam(BT) = Q (logn/loglogn) forr(n)=0(1).



Dynamic Bluetooth Topology
“Definition” of §(n, p, r(n), c(n))

Sequence of Markovian Evolving Graphs {G;};cn, Where the edge-set of
G; is selected according to the BT(r(n), c(n)) protocol, and each node

moves in a time step u.a.r. within a ball of radius p
Theorem (Flooding Time of DBT)

There exist two positive real constants y¢,v2 such that if

logn 1
> — = —_—
r(n) = v \/T and c(n) =vy2log )

then the flooding time of G(n, p, r(n), c(n)) is, w.h.p.,

TFL_O<r(1n)+Iogn>.



Extensions & Open Problems

» Extensions
» Whenr(n) =0 (w/log n/n) (minimum radius),
c(n) =0 («/Iog n/ loglog n) is the minimum number of neighbors

needed to achieve connectivity w.h.p. (Broutin et al. [arXiv'11])

» Generalization to higher dimensions



Extensions & Open Problems

» Extensions
» Whenr(n) =0 (x/log n/n) (minimum radius),
c(n)=0 (\/Iog n/loglog n) is the minimum number of neighbors

needed to achieve connectivity w.h.p. (Broutin et al. [arXiv'11])

» Generalization to higher dimensions

» Open problems

» Complete characterization of the trade-off between r(n) and c(n)

» Studying how expansion and diameter behave in the above case



Dynamic

Graphs
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Mobile Networks: a Closer Look

Mobile networks are distributed systems
» dynamic: topology changes over time. ..

» ... but not too fast: mobility speed < transmission speed

v

with no infrastructure: wireless, multi-hop communications

» under energy constraints: small transmission radius

v

essentially planar



Previous Work
» Alves et al. [Ann.App.Pr’02] and Kesten et al. [Ann.Pr.05]

» shape of the subspace of Z¢ containing “infected” RWs (Frog Model)

» Dimitriou et al. [Dis.App.Mat.06]

» k agents performing RWs on an n-node graph, bounds on the

expected infection time, depending on graph expansion

» Clementi et al. [[CALP'09, IPDPS’09]

» k = © (n) agents on a n-node 2D grid (dense scenario)
large maximum speed R and/or large transmission radius r

» bounds on broadcast time
> Peres et al. [SODA’11]
» Poisson point process in RY above percolation threshold

agents follow Brownian motion

» bounds on detection, coverage, broadcast time
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Communication Model

» Each agent has transmission
radius r > 0
» Visibility graph Gy(r):
» vertices = agents
» edge{a, a'} € Gi(r) —
| posa(t) — posa () [l < r
» each connected component is

called “island”



Communication Model

» M,(t) = messages known by a
attime t

» M,(t) is non-decreasing
(agents don’t forget messages)

» On a meeting, agents exchange

all the messages they know



Broadcast Time

Initially, only the source s knows the rumor M:
Ms(0) = {M} and M,(0) =0 Va#s

We study the Broadcast Time Ty of the system, which is the first time

instant when all the agents know the rumor:

Tg=inf{t >0 :Me My(t) Va}



Broadcast Time

Initially, only the source s knows the rumor M:
Ms(0) = {M} and M,(0) =0 Va#s

We study the Broadcast Time Ty of the system, which is the first time

instant when all the agents know the rumor:
Tg=inf{t>0:Me My(t) Va}

Remarks
» Tg = Ts(nk,r)
» Ty is non-increasing in r: r'>r= Tg(r') < Tg(r)

» Broadcast analysis extends to other communication primitives



Our Contribution [PODC’11]

» Tight bounds on the broadcast time Ty of a message in a sparse
system of mobile agents

» Our analysis techniques extend to several related models (dense

case, multiple messages, different interaction rules, . ..)
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Upper Bound on Ty

Theorem 1 (Upper Bound on Tg)

Let r = 0 (physical meetings). Then, for k > 2,

o)

with probability > 1 —1/n?.

Since Tg(r) is non-increasing:
Corollary 1

Ts=0 (n/\/E) w.h.p. forany k > 2, r > 0.

Quite surprisingly, this bound is essentially tight (see next slide)
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Lower Bound on Tg

Theorem 2 (Lower Bound on Tg)

Let r < g5+/n/k. Then, for k > 2,
~ n
Ts=0(—
with probability > 1 — (2= k1) +1/n+2/m?).

Peres et al. [SODA'11] consider the case r > r; & /n/k (i.e., above
percolation threshold)

Together with Corollary 1, we have the tight result:

Corollary 2

If k = Q (logn) and r < 55+/n/k, then Ts = © (n/\/E) w.h.p.
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Extensions & Open Problems
» Our analysis techniques extend to
» dense scenarios (k > n/2)
» other communication primitives (gossip, multicast)

» related models (Frog Model, mobility with jumps, predator-prey)

» Extensions
» Generalization to higher dimensions (Lam et al., SODA’12)
» Characterizing the Ty w.r.t. the mixing time of the underlying topology

(Clementi et al., arXiv'11)

» Open problems
» Modeling barriers and obstacles
» More realistic mobility models
» Tradeoffs between communication complexity and spreading time

» Tradeoffs between agent’s buffer size and spreading time



Conclusions




Contribution of this Thesis

» Bluetooth Topology
» Tight bounds on expansion

» Tight bounds (up to a log additive factor) on diameter

» Upper bound on flooding time in dynamic Bluetooth networks

» Dynamic Graphs
» Tight bounds (up to polylog factors) on the broadcast time of a
message in sparse mobile networks

» Our analysis techniques apply to several related scenarios
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