On the Expansion and Diameter of Bluetooth-Like Topologies

Alberto Pettarin, Andrea Pietracaprina and Geppino Pucci

Department of Information Engineering
University of Padova

Outline

(1) Technological Motivation
(2) Bluetooth Topology: the Model
(3) Expansion of BT

4 Diameter of BT

Bluetooth Technology

*Bluetooth

- Technology for wireless communication, named after King Harald Bluetooth who unified Denmark and Norway (10th century)
- Introduced as cable replacement for small PANs connecting laptops, mobile phones, PDAs, etc.
- Arguments in favor of BT for large ad-hoc scenarios:
- cheap and easily integrable
- good data rate/energy consumption tradeoff
- wide adoption
- see [Whitaker et al., 05] and [Kettimuthu, Muthukrishnan, 05]

Bluetooth Technology: Network Organization/Formation

- Transmission range r
- Piconet: 1 master, $\leqslant 7$ slaves
- Scatternet: interconnection of piconets through gateways to form multi-hop ad hoc network; three phases: device discovery, piconet formation, scatternet formation

Bluetooth Technology: Network Organization/Formation

- Transmission range r
- Piconet: 1 master, $\leqslant 7$ slaves
- Scatternet: interconnection of piconets through gateways to form multi-hop ad hoc network; three phases: device discovery, piconet formation, scatternet formation

Bluetooth Technology: Network Organization/Formation

- Transmission range r
- Piconet: 1 master, $\leqslant 7$ slaves
- Scatternet: interconnection of piconets through gateways to form multi-hop ad hoc network; three phases: device discovery, piconet formation, scatternet formation

Bluetooth Technology: Network Organization/Formation

- Transmission range r
- Piconet: 1 master, $\leqslant 7$ slaves
- Scatternet: interconnection of piconets through gateways to form multi-hop ad hoc network; three phases: device discovery, piconet formation, scatternet formation

Bluetooth Technology: Network Organization/Formation

- Transmission range r
- Piconet: 1 master, $\leqslant 7$ slaves
- Scatternet: interconnection of piconets through gateways to form multi-hop ad hoc network; three phases: device discovery, piconet formation, scatternet formation

Bluetooth Technology: Device Discovery

Goal

Each device must discover and set up links with (a subset of) all visible devices (i.e., distance $\leqslant r$) so to form a connected topology called Bluetooth Topology (BT).

Remarks:

- time and energy consuming task
- in practice, suitable time-outs (e.g., 10 s) are used
- alternative: a node stops when at least c links have been established [Dubhashi et al., 07]

Bluetooth Topology: Mathematical Model

Graph $B T(r(n), c(n))$

- n nodes (devices) placed at random in $[0,1]^{2}$

Bluetooth Topology: Mathematical Model

Graph $B T(r(n), c(n))$

- n nodes (devices) placed at random in $[0,1]^{2}$
- visibility range $r(n)$

Bluetooth Topology: Mathematical Model

Graph $B T(r(n), c(n))$

- n nodes (devices) placed at random in $[0,1]^{2}$
- visibility range $r(n)$
- among all visible nodes

Bluetooth Topology: Mathematical Model

Graph $B T(r(n), c(n))$

- n nodes (devices) placed at random in $[0,1]^{2}$
- visibility range $r(n)$
- among all visible nodes each device selects $c(n)$ random neighbors (it selects all visible nodes if $<c(n)$)

$B T(0.075,5)$ with $n=1500$ nodes.

Relevant Questions

How many neighbors should each device discover, in order for BT to exhibit:

- connectivity (i.e., single connected component)?
- good expansion (i.e., high bandwidth)?
- low diameter (i.e., low latency)?

Previous Work

- [Penrose 03]: $r(n)=\Omega(\sqrt{\ln n / n})$ necessary and sufficient to achieve connectivity w.h.p., when each node connects to all visible nodes (Random Geometric Graph or visibility graph)
- [Panconesi et al., 04]: for $r(n)=\Theta(1), c(n)=\Theta(1)$ suffices to attain high expansion w.h.p.
- [Dubhashi et al., 05]: for $r(n)=\Theta(1), c(n)=2$ suffices to attain connectivity w.h.p.

Previous Work

- [Penrose 03]: $r(n)=\Omega(\sqrt{\ln n / n})$ necessary and sufficient to achieve connectivity w.h.p., when each node connects to all visible nodes (Random Geometric Graph or visibility graph)
- [Panconesi et al., 04]: for $r(n)=\Theta(1), c(n)=\Theta(1)$ suffices to attain high expansion w.h.p.
- [Dubhashi et al., 05]: for $r(n)=\Theta(1), c(n)=2$ suffices to attain connectivity w.h.p.

Remark

Setting $r(n)=\Theta(1)$ implies that each node sees a constant fraction of all other nodes \Rightarrow unfeasible for large n.

Previous Work

- [Penrose 03]: $r(n)=\Omega(\sqrt{\ln n / n})$ necessary and sufficient to achieve connectivity w.h.p., when each node connects to all visible nodes (Random Geometric Graph or visibility graph)
- [Panconesi et al., 04]: for $r(n)=\Theta(1), c(n)=\Theta(1)$ suffices to attain high expansion w.h.p.
- [Dubhashi et al., 05]: for $r(n)=\Theta(1), c(n)=2$ suffices to attain connectivity w.h.p.

Remark

Setting $r(n)=\Theta(1)$ implies that each node sees a constant fraction of all other nodes \Rightarrow unfeasible for large n.

Analysis for $r(n)$ decreasing in n is needed!

Previous Work (cont'd)

Theorem (Crescenzi, Nocentini, Pietracaprina, Pucci, 2007)
There exist two positive real constants γ_{1}, γ_{2} such that if

$$
r(n) \geqslant \gamma_{1} \sqrt{\frac{\log n}{n}} \quad \text { and } \quad c(n)=\gamma_{2} \log \frac{1}{r(n)}
$$

then $B T(r(n), c(n))$ is connected w.h.p.

Our Contribution

- Tight bounds on the expansion of BT $(r(n), c(n))$
- Quasi-tight bounds (up to a logarithmic additive term) on the diameter of $\mathrm{BT}(r(n), c(n))$
- Results hold for all ranges of the parameters for which connectivity has been established in previous work
- We extend the results of Panconesi et al. (SPAA'04) to the case of vanishing $r(n)$

Preliminary Definitions

Let $G=(V, E)$ be an undirected connected graph.
The neighborhood of $S \subseteq V$:

$$
\Gamma(S)=\{u \in V: \exists e=(u, v) \in E, v \in S\} .
$$

The (node) expansion of G :

$$
\lambda(s)=\min _{S \subseteq V:|S|=s} \frac{|\Gamma(S)-S|}{s}, \quad 1 \leqslant s \leqslant|V| / 2 .
$$

Expansion of $\mathrm{BT}(r(n), c(n))$

Theorem (Expansion of BT)

Let $m=\Theta\left(n r^{2}(n)\right)$. Then, there exist two constants $\gamma_{1}, \gamma_{2}>0$ such that if

$$
r(n) \geqslant \gamma_{1} \sqrt{\frac{\log n}{n}} \quad \text { and } \quad c(n)=\gamma_{2} \log \frac{1}{r(n)}
$$

then the expansion of $B T(r(n), c(n))$ is, w.h.p.,

$$
\lambda(s)= \begin{cases}\Theta(\min \{c(n), m / s\}) & \text { if } 1 \leqslant s \leqslant \alpha m \\ \Theta(\sqrt{m / s}) & \text { if } \alpha m<s \leqslant n / 2 .\end{cases}
$$

Proof Roadmap

Tessellate $[0,1]^{2}$ into square cells of suitable side length.

- Lower bound: for any $S \subseteq V, 1 \leqslant|S| \leqslant|V| / 2$:

Proof Roadmap

Tessellate $[0,1]^{2}$ into square cells of suitable side length.

- Lower bound: for any $S \subseteq V, 1 \leqslant|S| \leqslant|V| / 2$:
- Characterize the local expansion of any pocket of S i.e., $S \cap$ cell;

Proof Roadmap

Tessellate $[0,1]^{2}$ into square cells of suitable side length.

- Lower bound: for any $S \subseteq V, 1 \leqslant|S| \leqslant|V| / 2$:
- Characterize the local expansion of any pocket of S i.e., $S \cap$ cell;
- Obtain expansion of S by combining pockets' expansion.

Proof Roadmap

Tessellate $[0,1]^{2}$ into square cells of suitable side length.

- Lower bound: for any $S \subseteq V, 1 \leqslant|S| \leqslant|V| / 2$:
- Characterize the local expansion of any pocket of S i.e., $S \cap$ cell;
- Obtain expansion of S by combining pockets' expansion.
- Upper bound: select a "worst-case" subset S whose expansion matches the above lower bound (easy).

Framework

Tessellation of $[0,1]^{2}$ into k^{2} square cells, with

$$
k=\left\lceil\frac{\sqrt{5}}{r}\right\rceil
$$

(for brevity, $r \equiv r(n)$).
\Rightarrow Nodes in adjacent cells are at distance $\leqslant r$.

Framework

Tessellation of $[0,1]^{2}$ into k^{2} square cells, with

$$
k=\left\lceil\frac{\sqrt{5}}{r}\right\rceil
$$

(for brevity, $r \equiv r(n)$).
\Rightarrow Nodes in adjacent cells are at distance $\leqslant r$.
Let $\alpha=9 / 10, \beta=11 / 10$ and $m=n / k^{2}$.
\Rightarrow W.h.p. each cell contains $\geqslant \alpha m$ and $\leqslant \beta m$ nodes.

$\longleftrightarrow \frac{1}{k}$

\Rightarrow W.h.p. each device sees $\Theta\left(n r^{2}\right)$ nodes.

Lower Bounds on Pockets' Expansion

Consider a generic pocket $P_{Q}=S \cap Q$, for a given cell Q :
Three lemmas cover untargeted expansion for large (1) and small (2) pockets and targeted (3) expansion, respectively, as $r(n)$ varies.

The Three Lemmas

W.h.p., for every cell Q and every pocket $P \subseteq Q \cap S$, the following results hold:

Lemma 1 - Large pockets or short radii
If $|P| \geqslant \log n$ or $r(n)=O\left(n^{-1 / 8}\right)$, then, $\forall P: 1 \leqslant|P| \leqslant \alpha^{\prime} m$,

$$
|\Gamma(P)-P| \geqslant \epsilon^{\prime} \min \{c(n)|P|, m\} .
$$

Lemma 2 - Small pockets and large radii
If $r(n)=\Omega\left(n^{-1 / 8}\right)$, then, $\forall P: 1 \leqslant|P|<\log n$,

$$
|\Gamma(P)| \geqslant \frac{1}{3} c(n)|P| .
$$

Lemma 3 - Targeted expansion
For any Q^{\prime} adjacent to $Q, \forall P \subseteq Q: m / c(n) \leqslant|P| \leqslant \alpha^{\prime \prime} m$,

$$
\left|\Gamma(P) \cap Q^{\prime}\right| \geqslant\left(1+\epsilon^{\prime \prime}\right)|P| .
$$

Lower Bound

Consider any $S \subseteq V, s=|S|$ with $1 \leqslant s \leqslant n / 2$.

Lower Bound

Consider any $S \subseteq V, s=|S|$ with $1 \leqslant s \leqslant n / 2$.
Let $\bar{\alpha}=\min \left\{\alpha^{\prime}, \alpha^{\prime \prime}\right\}$ and $\bar{\epsilon}=\min \left\{\frac{1}{3}, \epsilon^{\prime}, \epsilon^{\prime \prime}\right\}$.

Lower Bound

Consider any $S \subseteq V, s=|S|$ with $1 \leqslant s \leqslant n / 2$.
Let $\bar{\alpha}=\min \left\{\alpha^{\prime}, \alpha^{\prime \prime}\right\}$ and
$\bar{\epsilon}=\min \left\{\frac{1}{3}, \epsilon^{\prime}, \epsilon^{\prime \prime}\right\}$.
A cell Q is

- black if $|Q \cap S| \geqslant \bar{\alpha} m$ or

Lower Bound

Consider any $S \subseteq V, s=|S|$ with $1 \leqslant s \leqslant n / 2$.
Let $\bar{\alpha}=\min \left\{\alpha^{\prime}, \alpha^{\prime \prime}\right\}$ and
$\bar{\epsilon}=\min \left\{\frac{1}{3}, \epsilon^{\prime}, \epsilon^{\prime \prime}\right\}$.
A cell Q is

- black if $|Q \cap S| \geqslant \bar{\alpha} m$ or
- gray if $1 \leqslant|Q \cap S|<\bar{\alpha} m$.

Lower Bound

Consider any $S \subseteq V, s=|S|$ with $1 \leqslant s \leqslant n / 2$. Let $\bar{\alpha}=\min \left\{\alpha^{\prime}, \alpha^{\prime \prime}\right\}$ and $\bar{\epsilon}=\min \left\{\frac{1}{3}, \epsilon^{\prime}, \epsilon^{\prime \prime}\right\}$.
A cell Q is

- black if $|Q \cap S| \geqslant \bar{\alpha} m$ or
- gray if $1 \leqslant|Q \cap S|<\bar{\alpha} m$.

A majority of nodes of S is contained either in black or gray cells.

Lower Bound - Case 1: $\geqslant s / 2$ nodes in black cells

The number of black cells N_{b} is $\Omega(s / \beta m)$ and $s \geqslant \alpha m$.

Lower Bound - Case $1: \geqslant s / 2$ nodes in black cells

The number of black cells N_{b} is $\Omega(s / \beta m)$ and $s \geqslant \alpha m$.
A subset B of $\Omega\left(\sqrt{N_{b}}\right)$ black cells are adjacent to distinct non-black cells.

Lower Bound - Case 1: $\geqslant s / 2$ nodes in black cells

The number of black cells N_{b} is $\Omega(s / \beta m)$ and $s \geqslant \alpha m$.
A subset B of $\Omega\left(\sqrt{N_{b}}\right)$ black cells are adjacent to distinct non-black cells.

Lower Bound - Case 1: $\geqslant s / 2$ nodes in black cells

The number of black cells N_{b} is $\Omega(s / \beta m)$ and $s \geqslant \alpha m$.
A subset B of $\Omega\left(\sqrt{N_{b}}\right)$ black cells are adjacent to distinct non-black cells.

Lower Bound - Case 1: $\geqslant s / 2$ nodes in black cells

The number of black cells N_{b} is $\Omega(s / \beta m)$ and $s \geqslant \alpha m$.
A subset B of $\Omega\left(\sqrt{N_{b}}\right)$ black cells are adjacent to distinct non-black cells.

Lower Bound - Case 1: $\geqslant s / 2$ nodes in black cells

The number of black cells N_{b} is $\Omega(s / \beta m)$ and $s \geqslant \alpha m$.
A subset B of $\Omega\left(\sqrt{N_{b}}\right)$ black cells are adjacent to distinct non-black cells.

Lower Bound - Case 1: $\geqslant s / 2$ nodes in black cells

The number of black cells N_{b} is $\Omega(s / \beta m)$ and $s \geqslant \alpha m$.
A subset B of $\Omega\left(\sqrt{N_{b}}\right)$ black cells are adjacent to distinct non-black cells.

Lower Bound - Case 1: $\geqslant s / 2$ nodes in black cells

The number of black cells N_{b} is $\Omega(s / \beta m)$ and $s \geqslant \alpha m$.
A subset B of $\Omega\left(\sqrt{N_{b}}\right)$ black cells are adjacent to distinct non-black cells.

Lower Bound - Case 1: $\geqslant s / 2$ nodes in black cells

The number of black cells N_{b} is $\Omega(s / \beta m)$ and $s \geqslant \alpha m$.
A subset B of $\Omega\left(\sqrt{N_{b}}\right)$ black cells are adjacent to distinct non-black cells.

Each black/non-black pair contributes $\Omega(m)$ "new nodes" (Lemma 3), hence

$$
|\Gamma(B)-S|=\Omega(\sqrt{s m}) .
$$

Lower Bound - Case $2: \geqslant s / 2$ nodes in gray cells

Given a cell Q, we define its
sector \mathcal{S}_{Q} and its active area \mathcal{A}_{Q} as the squares 13×13 and 7×7 whose central cell is Q.

							Q				

Lower Bound - Case $2: \geqslant s / 2$ nodes in gray cells

Given a cell Q, we define its
sector \mathcal{S}_{Q} and its active area \mathcal{A}_{Q} as the squares 13×13 and 7×7 whose central cell is Q.

Lower Bound - Case $2: \geqslant s / 2$ nodes in gray cells

Given a cell Q, we define its
sector \mathcal{S}_{Q} and its active area \mathcal{A}_{Q} as the squares 13×13 and 7×7 whose central cell is Q.

Lower Bound - Case $2: \geqslant s / 2$ nodes in gray cells

Given a cell Q, we define its
sector \mathcal{S}_{Q} and its active area \mathcal{A}_{Q} as the squares 13×13 and 7×7 whose central cell is Q.

- All the nodes reachable from Q belong to \mathcal{A}_{Q}.

Lower Bound - Case $2: \geqslant s / 2$ nodes in gray cells

Given a cell Q, we define its
sector \mathcal{S}_{Q} and its active area \mathcal{A}_{Q} as the squares 13×13 and 7×7 whose central cell is Q.

- All the nodes reachable from Q belong to \mathcal{A}_{Q}.
- $\forall Q^{\prime} \notin \mathcal{S}_{Q}, \mathcal{A}_{Q} \cap \mathcal{A}_{Q^{\prime}}=\emptyset$.

Lower Bound - Case 2 (cont'd)

Proof based on a greedy selection process on $S \subseteq V$.

Lower Bound - Case 2 (cont'd)

Proof based on a greedy selection process on $S \subseteq V$.

1) Ignore the black cells.

Lower Bound - Case 2 (cont'd)

Proof based on a greedy selection process on $S \subseteq V$.

1) Ignore the black cells.
2) Pick the gray cell Q with the largest pocket P

Lower Bound - Case 2 (cont'd)

Proof based on a greedy selection process on $S \subseteq V$.

1) Ignore the black cells.
2) Pick the gray cell Q with the largest pocket P and mark all the cells in the sector \mathcal{S}_{Q}.

Lower Bound - Case 2 (cont'd)

Proof based on a greedy selection process on $S \subseteq V$.

1) Ignore the black cells.
2) Pick the gray cell Q with the largest pocket P and mark all the cells in the sector \mathcal{S}_{Q}.
3) Repeat Step 2 until all gray cells are marked.

Lower Bound - Case 2 (cont'd)

Proof based on a greedy selection process on $S \subseteq V$.

1) Ignore the black cells.
2) Pick the gray cell Q with the largest pocket P and mark all the cells in the sector S_{Q}.
3) Repeat Step 2 until all gray cells are marked.

Lower Bound - Case 2 (cont'd)

Proof based on a greedy selection process on $S \subseteq V$.

1) Ignore the black cells.
2) Pick the gray cell Q with the largest pocket P and mark all the cells in the sector S_{Q}.
3) Repeat Step 2 until all gray cells are marked.

Lower Bound - Case 2 (cont'd)

Proof based on a greedy selection process on $S \subseteq V$.

1) Ignore the black cells.
2) Pick the gray cell Q with the largest pocket P and mark all the cells in the sector S_{Q}.
3) Repeat Step 2 until all gray cells are marked.

Lower Bound - Case 2 (cont'd)

Proof based on a greedy selection process on $S \subseteq V$.

1) Ignore the black cells.
2) Pick the gray cell Q with the largest pocket P and mark all the cells in the sector S_{Q}.
3) Repeat Step 2 until all gray cells are marked.

Lower Bound - Case 2 (cont'd)

To lower bound the expansion of S, we determine a suitably large set of nodes $N_{t} \subseteq \Gamma(S)$ which belong to non-black cells of $\mathcal{A}_{c_{t}}$.

Lower Bound - Case 2 (cont'd)

To lower bound the expansion of S, we determine a suitably large set of nodes $N_{t} \subseteq \Gamma(S)$ which belong to non-black cells of $\mathcal{A}_{c_{t}}$.
(1) $\mathcal{A}_{c_{t}}$ contains only gray cells \Rightarrow let $N_{t}=\Gamma\left(P_{c_{t}}\right)-P_{c_{t}} \Rightarrow$

$$
\left|N_{t}\right| \geqslant \bar{\epsilon} \min \left\{c(n) p_{t}, m\right\} \text { by Lemmas } 1 \text { and } 2 .
$$

Lower Bound - Case 2 (cont'd)

To lower bound the expansion of S, we determine a suitably large set of nodes $N_{t} \subseteq \Gamma(S)$ which belong to non-black cells of $\mathcal{A}_{c_{t}}$.
(1) $\mathcal{A}_{c_{t}}$ contains only gray cells \Rightarrow let $N_{t}=\Gamma\left(P_{c_{t}}\right)-P_{c_{t}} \Rightarrow$

$$
\left|N_{t}\right| \geqslant \bar{\epsilon} \min \left\{c(n) p_{t}, m\right\} \text { by Lemmas } 1 \text { and } 2 .
$$

(2) $\mathcal{A}_{c_{t}}$ contains a black cell $\Rightarrow \exists$ pair of adjacent black/non-black cells: pick N_{t} as a set of $(1+\bar{\epsilon}) \bar{\alpha} m$ nodes belonging to $\Gamma\left(P_{c_{t}}\right)$ in the non-black cell (\exists by Lemma 3).

Lower Bound - Case 2 (cont'd)

To lower bound the expansion of S, we determine a suitably large set of nodes $N_{t} \subseteq \Gamma(S)$ which belong to non-black cells of $\mathcal{A}_{c_{t}}$.
(1) $\mathcal{A}_{c_{t}}$ contains only gray cells \Rightarrow let $N_{t}=\Gamma\left(P_{c_{t}}\right)-P_{c_{t}} \Rightarrow$ $\left|N_{t}\right| \geqslant \bar{\epsilon} \min \left\{c(n) p_{t}, m\right\}$ by Lemmas 1 and 2 .
(2) $\mathcal{A}_{c_{t}}$ contains a black cell $\Rightarrow \exists$ pair of adjacent black/non-black cells: pick N_{t} as a set of $(1+\bar{\epsilon}) \bar{\alpha} m$ nodes belonging to $\Gamma\left(P_{c_{t}}\right)$ in the non-black cell (\exists by Lemma 3).

Remark

Note that the N_{t} 's are all disjoint, but the sum of their sizes does not immediately yield a lower bound to $|\Gamma(S)-S|$, since each N_{t} may itself contain nodes of S, which have to be subtracted from the overall count.

Diameter of $\mathrm{BT}(r(n), c(n))$

Theorem (Diameter of BT)

There exist two positive real constants γ_{1}, γ_{2} such that if

$$
r(n) \geqslant \gamma_{1} \sqrt{\frac{\log n}{n}} \quad \text { and } \quad c(n)=\gamma_{2} \log \frac{1}{r(n)}
$$

then the diameter of $B T(r(n), c(n))$ is, w.h.p.,

- $\operatorname{diam}(B T)=O(1 / r(n)+\log n)$
- $\operatorname{diam}(B T)=\Omega(1 / r(n)) \quad$ (tight for $r(n)=O(1 / \log n))$
- $\operatorname{diam}(B T)=\Omega(\log n / \log \log n) \quad$ for $r(n)=\Theta(1)$.

Upper Bound on the Diameter: Proof Idea

Limit the depth of any BFS tree by leveraging on the expansion result.

Upper Bound on the Diameter: Proof Idea

Limit the depth of any BFS tree by leveraging on the expansion result.

Lemma (Key Recurrence)
Given a connected undirected graph $G=(V, E)$ with n nodes and expansion $\lambda(s)$, for $1 \leqslant s \leqslant n / 2$, consider the following recurrence:

$$
\begin{aligned}
N_{0} & =1 \\
N_{i} & =\left(1+\lambda\left(N_{i-1}\right)\right) N_{i-1} .
\end{aligned}
$$

Define i^{\star} as the smallest index such that $N_{i^{\star}}>n / 2$. Then, $\operatorname{diam}(G) \leqslant 2 i^{\star}$.

Upper Bound on the Diameter: Proof Idea

Limit the depth of any BFS tree by leveraging on the expansion result.

Lemma (Key Recurrence)
Given a connected undirected graph $G=(V, E)$ with n nodes and expansion $\lambda(s)$, for $1 \leqslant s \leqslant n / 2$, consider the following recurrence:

$$
\begin{aligned}
N_{0} & =1 \\
N_{i} & =\left(1+\lambda\left(N_{i-1}\right)\right) N_{i-1} .
\end{aligned}
$$

Define i^{\star} as the smallest index such that $N_{i^{\star}}>n / 2$. Then, $\operatorname{diam}(G) \leqslant 2 i^{\star}$.

The Theorem follows easily from the above Lemma and standard calculations.

Summary

- For $S:|S|=\Omega(m / c(n))$, the Bluetooth Topology $\mathrm{BT}(r(n), c(n))$ features the same expansion and (roughly) the same diameter as the (much denser) Random Geometric Graph $R G G(r(n))$.

Summary

- For $S:|S|=\Omega(m / c(n))$, the Bluetooth Topology $\mathrm{BT}(r(n), c(n))$ features the same expansion and (roughly) the same diameter as the (much denser) Random Geometric Graph $R G G(r(n))$.
- Open problem: Full characterization of the tradeoffs between $c(n)$ and connectivity/expansion/diameter.

Lower Bound — Details of Case 2

Notation:

- W is the set of selected centers, $|W|=w$;
- c_{t} is the center (cell) selected at the t-th iteration, $1 \leqslant t \leqslant w$;
- $P_{c_{t}}=S \cap c_{t}$;
- g_{t} : \# of nodes of S in unmarked gray cells of $\delta_{c_{t}}$ at the beginning of iteration t.

In order to lower bound the expansion of S, for all $1 \leqslant t \leqslant w$, we determine a suitably large set of nodes $N_{t} \subseteq \Gamma(S)$, which belong to non-black cells of $\mathcal{A}_{c_{t}}$.

Lower Bound - Details of Case 2 (cont'd)

Two cases are possible.
(1) $\mathcal{A}_{c_{t}}$ contains only gray cells.

Let $N_{t}=\Gamma\left(P_{c_{t}}\right)-P_{c_{t}}$. Then $\left|N_{t}\right| \geqslant \bar{\epsilon} \min \left\{c(n) p_{t}, m\right\}$ by Lemmas 1 and 2 .

Lower Bound — Details of Case 2 (cont'd)

Two cases are possible.
(1) $\mathcal{A}_{c_{t}}$ contains only gray cells.

Let $N_{t}=\Gamma\left(P_{c_{t}}\right)-P_{c_{t}}$. Then $\left|N_{t}\right| \geqslant \bar{\epsilon} \min \left\{c(n) p_{t}, m\right\}$ by Lemmas 1 and 2 .
(2) $\mathcal{A}_{c_{t}}$ contains a black cell.

There exists a pair of adjacent black/non-black cells. Pick N_{t} as a set of $(1+\bar{\epsilon}) \bar{\alpha} m$ nodes in the non-black cell belonging to $\Gamma\left(P_{c_{t}}\right)$ (exists by Lemma 3).

Lower Bound - Details of Case 2 (cont'd)

Two cases are possible.
(1) $\mathcal{A}_{c_{t}}$ contains only gray cells. Let $N_{t}=\Gamma\left(P_{c_{t}}\right)-P_{c_{t}}$. Then $\left|N_{t}\right| \geqslant \bar{\epsilon} \min \left\{c(n) p_{t}, m\right\}$ by Lemmas 1 and 2 .
(2) $\mathcal{A}_{c_{t}}$ contains a black cell.

There exists a pair of adjacent black/non-black cells. Pick N_{t} as a set of $(1+\bar{\epsilon}) \bar{\alpha} m$ nodes in the non-black cell belonging to $\Gamma\left(P_{c_{t}}\right)$ (exists by Lemma 3).

Remark

Note that the N_{t} 's are all disjoint, but the sum of their sizes does not immediately yield a lower bound to $|\Gamma(S)-S|$, since each N_{t} may itself contain nodes of S, which have to be subtracted from the overall count.

Lower Bound — Details of Case 2 (cont'd)

In the first subcase, no active area contains black cells.

The number of "new nodes" reached by G is

$$
\left(\sum_{t=1}^{w}\left|N_{t}\right|\right)-|G|=\sum_{t=1}^{w}\left|N_{t}\right|-g_{t} \geqslant \sum_{t=1}^{w}\left|N_{t}\right|-169 p_{t} .
$$

For a sufficiently large $c(n)$, we have $\left|N_{t}\right|-169 p_{t}=\mu\left|N_{t}\right|$, for a constant μ. Hence,

$$
\sum_{t=1}^{w}\left|N_{t}\right|-169 p_{t}=\Omega\left(\sum_{t=1}^{w} \bar{\epsilon} \min \left\{c(n) p_{t}, m\right\}\right)=\Omega(\min \{c(n) s, m\})
$$ and the theorem follows.

Lower Bound — Details of Case 2 (cont'd)

In the second subcase, some active area contains a black cell.

Partition $W=B_{1} \cup B_{2}$ where the centers in B_{1} do not have black cells in their active areas and B_{2} do have.

Suppose that $\sum_{t \in B_{2}}\left|N_{t}\right| \geqslant \tau \sum_{t \in B_{1}}\left|N_{t}\right|$, where τ is a constant.
For each $t \in B_{2}$ the set N_{t} contains $(1+\bar{\epsilon}) \bar{\alpha} m$ nodes, and at least $\bar{\epsilon} \bar{\alpha} m$ of these are "new nodes". Hence, the total number of "new nodes" of S is at least

$$
\sum_{t \in B_{2}} \bar{\epsilon} \bar{\alpha} m=\frac{\bar{\epsilon}}{1+\bar{\epsilon}} \sum_{t \in B_{2}}\left|N_{t}\right| \geqslant \frac{\bar{\epsilon}}{1+\bar{\epsilon}} \frac{\tau}{1+\tau} \sum_{t=1}^{w}\left|N_{t}\right|,
$$

and the theorem follows.

Lower Bound - Details of Case 2 (cont'd)

In the second subcase, some active area contains a black cell.

Finally, if $\sum_{t \in B_{2}}\left|N_{t}\right|<\tau \sum_{t \in B_{1}}\left|N_{t}\right|$, the number of "new nodes" accounted for by the N_{t} 's is

$$
\begin{aligned}
& \left(\sum_{t=1}^{w}\left|N_{t}\right|\right)-|G|=\sum_{t \in B_{1}}\left(\left|N_{t}\right|-169 p_{t}\right)+\sum_{t \in B_{2}}\left(\left|N_{t}\right|-169 p_{t}\right) \\
& \geqslant \sum_{t \in B_{1}} \mu\left|N_{t}\right|+\sum_{t \in B_{2}}((1+\bar{\epsilon}) \bar{\alpha} m-169 \bar{\alpha} m)>\sum_{t \in B_{1}} \mu\left|N_{t}\right|-\sum_{t \in B_{1}}\left(\frac{169}{1+\bar{\epsilon}}-1\right) \tau\left|N_{t}\right| .
\end{aligned}
$$

By fixing τ such that $((169 /(1+\bar{\epsilon}))-1) \tau=\mu / 2$, we get

$$
\sum_{t \in B_{1}} \mu\left|N_{t}\right|-\sum_{t \in B_{1}}\left(\frac{169}{1+\bar{\epsilon}}-1\right) \tau\left|N_{t}\right|=\frac{\mu}{2} \sum_{t \in B_{1}}\left|N_{t}\right|=\Omega\left(\sum_{t=1}^{w}\left|N_{t}\right|\right),
$$

and the theorem follows.

